Keeping the End in Mind: Examining Completers’ Course-Taking to Improve Advising and Program Design

Matthew Zeidenberg
Community College Research Center
Teachers College, Columbia University
American Association of Community Colleges Conference
Orlando, Florida
April 22, 2012
The Approach

Identifying the course-taking patterns of credential completing students can:

- Reveal what courses students are actually taking in college (as opposed to what we think they should be taking)
- Suggest pathways for current students
Overview of Presentation

- Identifying programs of study for students
- Designing an electronic advising system
- Understanding credits taken in excess of those required for a degree
- Extending the idea of gatekeeper courses beyond English and math
- Examining grade differences in various courses between completing and non-completing students
Assigning a Program of Study to a Non-Completing Student

- We employ a machine learning method to:
 - Assign a program of study to every student based on completers’ course taking and programs

- This can be used to:
 - Understand course-taking activity at a given college
 - Advise students
Designing an Electronic Advising System

• Unlike Degree Audit systems, an Electronic Advising system would:
 – Be based only on transcript data
 – Have no rules
 – Would utilize completing students as models for non-completing students

• We are prototyping an advising system to illustrate these ideas
Aspects of an Electronic Advising System

- Student can select one of a few suggested programs based on courses taken to date.
- The system would then suggest courses:
 - Taken by completers in same program
 - Taken by students with similar course-taking patterns
 - That are next in a sequence (e.g., History 202 follows History 201)
 - That are associated (e.g., students who take Math 201 also take Chem. 201)
- Would show student progress to date
Deducing the Order of Courses in a Program

• For each completer, identify:
 – Which semester when they took each course
• Then assign each course to:
 – The semester in which it is most likely to be taken (across all completers)
• Select the top six courses by semester to assemble the course ordering
• In advising, such a course ordering could help determine where a student is in the program
Example: Associate of Science in Business Admin. at One College

<table>
<thead>
<tr>
<th>Semester</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern based on student top enrollments</td>
<td>ENG 111</td>
<td>ENG 112</td>
<td>ACC 211</td>
<td>ACC 212</td>
</tr>
<tr>
<td></td>
<td>BUS 100</td>
<td>MTH 163</td>
<td>ECO 201</td>
<td>ECO 202</td>
</tr>
<tr>
<td></td>
<td>ITE 115</td>
<td>HIS 122</td>
<td>SPD 110</td>
<td>ACC 212</td>
</tr>
<tr>
<td></td>
<td>SDV 100</td>
<td>MTH 166</td>
<td>BIO 101</td>
<td>PED 116</td>
</tr>
<tr>
<td></td>
<td>HIS 121</td>
<td>MTH 174</td>
<td>BUS 200</td>
<td>MTH 271</td>
</tr>
<tr>
<td></td>
<td>STD 100</td>
<td>SPD 126</td>
<td>PED 135</td>
<td>BIO 102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MTH 241</td>
</tr>
<tr>
<td>Program as listed on website</td>
<td>ENG 111</td>
<td>BUS 100</td>
<td>ACC 211</td>
<td>ACC212</td>
</tr>
<tr>
<td></td>
<td>ITE 115</td>
<td>ENG 112</td>
<td>ECO 201</td>
<td>General elective</td>
</tr>
<tr>
<td></td>
<td>SDV 100</td>
<td>PED 116</td>
<td>General elective</td>
<td>Public speaking</td>
</tr>
<tr>
<td></td>
<td>HIS elective</td>
<td>Science elective</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td></td>
<td>MTH elective</td>
<td>Math elective</td>
<td>P.E. or Rec.</td>
<td>P.E. or Rec.</td>
</tr>
<tr>
<td></td>
<td>Science elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The program as listed on the website includes an additional Science elective, Math elective, and P.E. or Rec. during the fourth semester.
Take-aways

• The following are feasible and could be useful for student advising and in understanding student activity:
 – Assigning programs of study to current students
 – Identifying pairs of courses found in sequence or often together in transcripts
 – Identifying courses often taken by completing students
 – Identifying the sequence of courses of completing students

• Electronic student advising could boost student outcomes
Excess Credits

• Many credential earners earn more credits than they need
 – Are these extra courses useful or not?
 – Are there substantial efficiency losses associated with this?
Possible Reasons for Excess Credits

- Students are not well self-directed
- Limited advising available; unclear information; too much information
- Structural or scheduling problems (e.g., class is full)
- Needed classes not listed in formal requirements
- Can transfer excess to a four-year college
- Student interest in courses outside their program
Excess Credits by Program

- Programs have different credit requirements
- Need to use different baseline for each program
- For one state community college system, I determined these credit baselines for the associate degree programs in that system
Counting Excess Credits

• Excess credits index: share of total credits that are in excess

• System-wide, for 14,259 associate degree completers in six cohorts:
 – Mean number of excess credits was 14
 – Median was 9
 – Index was 12 percent

• Excess credits accounted for about 9 percent of the cost of courses
Auditing a Program’s Requirements

- Look at excess credits by subject of completers of a particular program
- Faculty and administrators can then compare course-taking activity by program completers with requirements
Requirements Audit: AS in Business Admin. at a College

<table>
<thead>
<tr>
<th>Subject</th>
<th>Classes Required</th>
<th>Percent of Completers Exceeding Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>Accounting</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Economics</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Science</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>Humanities</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>Computers</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>College Success</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>English</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>Math</td>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td>Physical Education or Recreation</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Public Speaking</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Take-aways

– There is a significant level of excess credits overall (9 credit median) in the system studied
– Colleges and programs within colleges vary on excess credits
– Some excess credits are related to program of study, some not; varies by program
– Costly in time/money in any case, but may enable students to learn useful additional material
– Leads one to the idea of continuously auditing student transcripts
Continuous Degree Audit

• Every term:
 – Compare transcript with requirements to see if each student is on track
• Did this for excess credits above
• Similar to electronic advising system for students, but instead used administratively by faculty and staff
Generalizing the Idea of Gatekeeper Courses

- English and especially math remain gatekeepers to college success.
- Completers do better than non-completers in many commonly taken courses beyond these, showing that there are many barriers: “obstacle” courses.
Grade Differences in the Most Commonly Taken Courses

<table>
<thead>
<tr>
<th>Rank</th>
<th>Course Title</th>
<th>Enrollment Rate</th>
<th>Mean Grade</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Completers</td>
<td>Non-Completers</td>
<td>Completers</td>
</tr>
<tr>
<td>1</td>
<td>College Composition I</td>
<td>75.4%</td>
<td>57.5%</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>College Success Skills</td>
<td>47.4%</td>
<td>41.6%</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>College Composition II</td>
<td>68.6%</td>
<td>32.7%</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Introduction to Computer Applications and Concepts</td>
<td>57.5%</td>
<td>31.5%</td>
<td>3.4</td>
</tr>
<tr>
<td>5</td>
<td>United States History I</td>
<td>44.1%</td>
<td>24.2%</td>
<td>3.1</td>
</tr>
<tr>
<td>6</td>
<td>General Biology I</td>
<td>43.2%</td>
<td>20.0%</td>
<td>2.9</td>
</tr>
<tr>
<td>7</td>
<td>United States History II</td>
<td>36.3%</td>
<td>14.5%</td>
<td>3.2</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to Psychology I</td>
<td>24.3%</td>
<td>15.4%</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>Precalculus I</td>
<td>31.9%</td>
<td>11.4%</td>
<td>2.8</td>
</tr>
<tr>
<td>10</td>
<td>History of Western Civilization I</td>
<td>20.0%</td>
<td>12.3%</td>
<td>3.1</td>
</tr>
<tr>
<td>11</td>
<td>General Biology II</td>
<td>37.5%</td>
<td>9.3%</td>
<td>2.9</td>
</tr>
<tr>
<td>12</td>
<td>Introduction to Business</td>
<td>17.8%</td>
<td>11.6%</td>
<td>3.1</td>
</tr>
<tr>
<td>13</td>
<td>Principles of Psychology</td>
<td>20.8%</td>
<td>10.1%</td>
<td>3.0</td>
</tr>
<tr>
<td>14</td>
<td>Principles of Public Speaking</td>
<td>32.1%</td>
<td>8.7%</td>
<td>3.4</td>
</tr>
<tr>
<td>15</td>
<td>Principles of Sociology</td>
<td>20.8%</td>
<td>9.4%</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Models of Grade Differences

• We are constructing models to account for observable differences between completers and non-completers in terms of:
 – Demographics
 – Credit accumulation (comparing completers with non-completers with many credits)

• These models should reduce our estimates of the gaps between completers and non-completers’ grades, but should not eliminate them
Take-aways

– Need to generalize gatekeeper course concept beyond math and English
– Students who are unable to complete have difficulty in many frequently taken classes in many programs
– Analysis of gaps in grades can help identify those courses in which students need help
For more information:

Please visit us on the web at
http://ccrc.tc.columbia.edu,
where you can download presentations, reports,
and briefs, and sign-up for news announcements.
We’re also on Facebook and Twitter.

Community College Research Center
Institute on Education and the Economy, Teachers College, Columbia University
525 West 120th Street, Box 174, New York, NY 10027
E-mail: ccrc@columbia.edu
Telephone: 212.678.3091