Developmental Education Reform to Improve Student Outcomes: Findings from Four Evaluations

Organizer: James Benson
National Center for Education Research

Discussant: Christopher M. Mullin
Education Commission of the States
Purpose and Sequence for the Session

- Build rigorous research evidence on promising forms of developmental education reform
 - Address rapidly-changing policies and practices
 - Address 3 stages in the pipeline: placement, remediation, attainment
 - Examine reforms that vary in scope
- Sequence of reform topics
 1. Placing students into (and out of) developmental education
 2. DCMP: a college- and system-level research-informed reform strategy
 3. Co-requisite remediation (Texas): state-level, policy-driven reform
 4. Developmental education reform (Florida): state-level, policy-driven reform
Agenda and Timeline

- Paper #1: Evaluation of a Multiple Measures Placement System Using Data Analytics: Early Impact Findings (15 minutes)
- Paper #2: Evaluation of the Dana Center Math Pathways (15 minutes)
- Paper #3: The Causal Impact of Corequisite Remediation on Student Outcomes (15 minutes)
- Paper #4: Accelerating Success: The Impact of Florida’s Developmental Education Reform on First Year Credit Accumulation (15 minutes)
- Discussant Comments (10 minutes)
- Questions/Answers/Comments (15 minutes)
Acknowledgements

• The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through the grants mentioned below. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education.
• R305C140007 to Teachers College, Columbia University
• R305H170085 to American Institutes for Research
• R305A160166 to Florida State University
Evaluation of a Multiple Measures Placement System Using Data Analytics: Early Impact Findings

Elisabeth Barnett, Senior Research Scholar

Community College Research Center, Teachers College
Multiple Measures Assessment
Students needing 1+ developmental education course (NCES, 2013)
Community college 8-year graduation rates
(Attewell, Lavin, Domina, and Levey, 2006)

- 28% Students Needing Remediation
- 43% Students Not Needing Remediation
Under-placement and Over-placement

<table>
<thead>
<tr>
<th>Student Ability</th>
<th>Placement According to Exam</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Developmental</td>
<td>Developmental</td>
<td>✔️</td>
</tr>
<tr>
<td>College Level</td>
<td>Under-placed (English – 29%) (Math – 18%)</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td>Over-placed (English – 5%) (Math – 6%)</td>
<td></td>
</tr>
</tbody>
</table>
Why Use Multiple Measures

• Existing placement tests are not good predictors of success in college courses. High School Grade Point Average (GPA) does a better job.

• More information improves most predictions.

• Different measures may be needed to best place specific student groups.
Percent of Colleges Using Measures Other than Standardized Tests for Assessment

2011 data from Fields and Parsad (2012); 2016 data from the CAPR’s institutional survey.

NOTE: The Fields and Parsad (2012) reading statistics are for reading placement only, whereas the CAPR survey data are for both reading and writing.
Processes Used to Determine College Readiness in Community Colleges

- Standardized Tests
- High School Performance
- Planned Course of Study
- Other Indicators of Motivation or Commitment
- College Readiness Not Assessed

SOURCE: Data from CAPR’s institutional survey.
NOTE: Categories are not mutually exclusive.
The Center for the Analysis of Postsecondary Readiness (CAPR) Assessment Study
Research on Alternative Placement Systems

- 5-6 year project
- 7 State University of New York community colleges
- Evaluation of the use of predictive analytics in student placement decisions
- Research includes Randomized Control Trial (RCT), implementation study, and cost study
- Current status: completed preliminary report
Research Questions (Summary)

1. Do students’ outcomes improve when they are placed using predictive analytics?

2. How does each college adopt/adapt and implement such a system?
The State University of New York Sites

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – The Center for the Analysis of Postsecondary Readiness, Community College Research Center, MDRC</td>
<td></td>
</tr>
<tr>
<td>B – Cayuga Community College</td>
<td></td>
</tr>
<tr>
<td>C – Jefferson Community College</td>
<td></td>
</tr>
<tr>
<td>D – Niagara County Community College</td>
<td></td>
</tr>
<tr>
<td>E – Onondaga Community College</td>
<td></td>
</tr>
<tr>
<td>F – Rockland Community College</td>
<td></td>
</tr>
<tr>
<td>G – Schenectady County Community College</td>
<td></td>
</tr>
<tr>
<td>H – Westchester Community College</td>
<td></td>
</tr>
</tbody>
</table>
How Does the Predictive Analytics Placement Work?

1. Use data from *previous* cohorts
2. Develop formula to predict student performance
3. Set cut scores
4. Use formula to place *entering* cohort of students
First Cohort - First Semester (Fall 2016)

Sample = 4,729 first year students across 5 colleges

- 48% students assigned to business-as-usual (n=2,274)
- 52% students assigned to treatment group (n=2,455)
- 82% enrolled into at least one course in 2016 (n=3,865)

All of the findings shown here are statistically significant (p<.05)
Treatment Effects: Math

- **College Level Course Placement**: 43.7% (Control Group) vs. 48.7% (Program Group)
- **College Level Course Enrollment**: 25.3% (Control Group) vs. 30.0% (Program Group)
- **College Level Course Enrollment and Completion**: 14.1% (Control Group) vs. 17.2% (Program Group)
Treatment Effects: English

- **College Level Course Placement**: 82.8% Program Group vs. 52.4% Control Group
- **College Level Course Enrollment**: 60.1% Program Group vs. 40.8% Control Group
- **College Level Course Enrollment and Completion**: 39.7% Program Group vs. 27.2% Control Group
Treatment Effects: Total College Level Credits Earned

![Bar Chart]

- **Control Group**: 5.17
- **Program Group**: 5.77

College Level Credits Earned

- **Control Group**
- **Program Group**
Treatment Effects: College Level Math Completion

![Bar Chart with Treatment Effects for College Level Math Completion]

- **Black**: Control Group 15%, Program Group 18%
- **Hispanic**: Control Group 18%, Program Group 21%
- **White**: Control Group 25%, Program Group 24%
- **Pell**: Control Group 13%, Program Group 22%
- **Non-Pell**: Control Group 25%, Program Group 25%
- **Female**: Control Group 15%, Program Group 21%
- **Male**: Control Group 20%, Program Group 21%
Treatment Effects: College Level English Completion

![Bar chart showing completion rates by group and demographic]
Implementation Challenges

- The range of departments affected by the change
- Lack of historical data for analysis due to multiple reforms
- Concerns about the use of the high school GPA
- Access to the high school GPA
- Communications within colleges
Costs

• First fall-term costs were roughly $110 per student above status quo (Range: $70-$320)

• Subsequent fall-term costs were roughly $40 per student above status quo (Range: $10-$170)
Contact Us:

Email us:

Elisabeth Barnett– Barnett@tc.columbia.edu

Dan Cullinan– Dan.Cullinan@mdrc.org

Visit us online:

CCRC Website: CCRC.tc.Columbia.edu

MDRC Website: www.mdrc.org

To download presentations, reports, briefs, and sign-up for news announcements. We are also on Facebook and Twitter @CommunityCCRC
Evaluation of the Dana Center Math Pathways

Elizabeth Zachry Rutschow

MDRC
Drivers that Create Barriers for Students

Problem

Postsecondary mathematics is a BARRIER to degree completion for millions of students

Drivers of the Problem

Mismatch of content

Long course sequences

From *The Case for Mathematics Pathways* (Dana Center, 2016)
What Math Do Students Need?

Two-Year College Student Enrollment Into Programs of Study

- 20% require calculus
- 80% do not require calculus

Four-Year College Student Enrollment Into Programs of Study

- 28% requires calculus
- 72% do not require calculus

Traditional Math Instruction Tends to Focus on...

- Teacher-directed lecture
- Formulas and equations
- Rote memorization
- Few real-world applications
The Dana Center Mathematics Pathways (DCMP)
The DCMP Model: Revisions to Math Content

A Comparison of Mathematics Offerings for Students with Two Levels of Developmental Need
The DCMP Model: Instructional Changes

<table>
<thead>
<tr>
<th>Teacher-directed lecture</th>
<th>Active Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas and equations</td>
<td>Reading and Writing</td>
</tr>
<tr>
<td>Rote memorization</td>
<td>Problem Solving</td>
</tr>
<tr>
<td>Few real-world applications</td>
<td>Constructive Perseverance</td>
</tr>
<tr>
<td></td>
<td>Contextualization</td>
</tr>
</tbody>
</table>

Active Learning
Small group work, student interaction, presenting solution methods

Reading and Writing

Problem Solving
Multistep problems building on previously learned content or answers;
Multiple solution methods

Constructive Perseverance
Understanding the role struggle plays in learning

Contextualization
Problems contextualized in real-life situations
Sample DCMP Problem

Question: A research report estimates that individuals who smoke are 15 to 30 times more likely to develop lung cancer than individuals who never smoke. If the lifetime risk of developing lung cancer for nonsmokers is about 1.9 percent, what is the lower limit of the estimated risk for smokers according to the report?

Answer: The lower limit of the estimated risk for smokers according to this report is ________ percent.
The CAPR Evaluation of the DCMP
A Mixed-Methods Evaluation: Impact, Implementation, & Cost Study

Impact study
- RCT at four Texas colleges
 - 1,422 students
 - 4 cohorts (Fall 2015 - Spring 2017)
 - Outcomes tracked for 3+ semesters
- Key outcomes
 - Completion of Developmental Math
 - Completion College-Level Math Course
 - Overall Academic Progress

Implementation study
- Fidelity and treatment contrast
- Differences in content and pedagogy

Cost study
- Is DCMP cost effective relative to traditional services?
Early Implementation: Challenges & Changes

Which pathway should students take?
- Revise requirements for majors
- Revise advising
- But not all eligible students reached

Will four-year transfer colleges accept a non-algebra math course?
- Good progress made with alignment four-year colleges
- But some continuing challenges

Can math faculty move away from algebra?
- Strong implementation
- Very different course content

Can faculty change pedagogy?
- Relatively strong implementation
- Contextualization & student centered approaches
- Qualitatively different classroom experience for students
Early Impacts on Student Success
(Fall 2015 and Spring 2016 Cohorts, through 2 Semesters)

Registered in the second semester
Ever enrolled in developmental math class
Ever passed developmental math class
Ever enrolled in college-level math class
Ever passed college-level math class

Program Group
Standard Group

Statistical significance levels are indicated as follows: * = 10 percent; ** = 5 percent; *** = 1 percent.
The Final Report will include...

- Impact analysis, following all cohorts for at least three semesters
- Analysis of the institutional-level and classroom-level implementation of the DCMP
- Cost-effectiveness analysis of the DCMP
- Publication date: Fall 2019
Experimental Evidence on the Impact of Corequisite Remediation in Texas

Paco Martorell, Associate Professor

University of California at Davis
Background

• 2011: Texas passed broad set of policies on developmental education reforms (e.g., accelerated models, multiple measures, change to assessment)

• 2013: IES-funded research-practice partnership between RAND and Texas Higher Education Coordinating Board (THECB) to study reforms, build research agenda

• 2015: RAND and THECB received IES funding to rigorously evaluate one of these reforms, corequisites
Corequisite remediation blends acceleration and curricular reform

Traditional pathway

Corequisite approaches

Semester 1
- Developmental Education (DE) Course(s)

Semester 2
- College-Level Course

- College-Level Course

- Other College-Level Courses

Corequisite DE Support
(DE course or non-course based option)
Some evidence suggesting that corequisites improve student outcomes

Accelerated Learning Program (ALP)
Quasi-experimental study (Cho et al., 2012) found ~40 percentage point greater likelihood of passing gateway English within 3 years

Statistics+Workshop vs Algebra
Randomized control trial (Logue et al., 2016) found ~17 percentage point greater likelihood of passing gateway math within 1 year

Statewide Policy Mandating Scale-Up in Math and English
Descriptive evidence shows that first-semester pass rates of gateway English were 62%, compared to a 31% first-year pass rate historically.
The intervention is direct enrollment in a writing and reading corequisite

• Treatment: Immediate enrollment in a Composition I course with a concurrent Integrated Reading and Writing (IRW) support
 – Common features across study colleges: Student learning outcomes, credit hours for course and support (3 SCH for course, 1 SCH DE support), writing score range for sample
 – Varied corequisite models

• Control: Enrollment in a IRW course prior to Composition I enrollment
 – No opportunity to enroll in a college-level writing or reading intensive course in the first semester
 – Required to enroll in 2-3 additional SCHs of DE coursework overall
 – DE not as closely aligned with credit-bearing course (and other differences in content, structure, pedagogy)
The RCT examined three types of corequisite models

<table>
<thead>
<tr>
<th>Structure of support</th>
<th>Accelerated Learning Program</th>
<th>Extended Instructional Time</th>
<th>Required Support Service Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Classroom instruction</td>
<td>Classroom instruction</td>
<td>Tutoring in office hours, writing center</td>
</tr>
<tr>
<td>Instructor for course/support</td>
<td>Same</td>
<td>Same</td>
<td>Same at one college, different at other</td>
</tr>
<tr>
<td>Student mix in college course</td>
<td>Mix of college-ready and DE</td>
<td>All DE</td>
<td>Mix of college-ready and DE</td>
</tr>
<tr>
<td>Student-to-faculty ratios in DE support</td>
<td>10:1</td>
<td>22:1</td>
<td>5:1, 10:1</td>
</tr>
</tbody>
</table>
We conducted a randomized experiment in five Texas community colleges

- Setting: 5 colleges in large community college systems in urban/suburban regions; large populations of at-risk students
- Sample: First-time in college students scoring into the highest level IRW course placement range
 - N=2,157 randomized fall 2016-fall 2018
- Recruitment: Students recruited, surveyed, and randomized at time of course registration
- Randomization: 50% T/50% C for most; 67% T/33% for one college in fall 2017
We collected a range of data

- Administrative data: Student and faculty characteristics, course enrollment, outcomes
- Student surveys
 - Baseline: Detailed student characteristics
 - Follow-up: First-semester experiences and early outcomes
- RCT implementation data: Faculty survey, student and faculty focus groups, administrator interviews, observations, course documents, cost data
- Statewide implementation data: Statewide institutional survey, interviews with administrators/faculty leads from 36 community colleges
Students assigned to control were significantly more likely to pass English Composition I and II within 1 academic year.

Probability of Achieving Outcome Within 1 Academic Year by Treatment Status

- **English Comp I**: 24.2 PPT***
- **English Comp II**: 15.4
- **College Reading**: 6.6 PPT***
- **Persistence**: 0.4 PPT

* = statistically significant at 0.1 level
** = statistically significant at 0.05 level
*** = statistically significant at 0.01 level
Effects were positive for key subgroups of interest

Probability of Passing English 1301 Within 1 Academic Year by Treatment Status, Student Characteristics

- All: 24.2 PPT***
- Hispanic: 29.3 PPT***
- First Generation: 27.4
- First Language Non-English: 23.8 PPT***

* = statistically significant at 0.1 level
** = statistically significant at 0.05 level
*** = statistically significant at 0.01 level
We found evidence of short-term effectiveness for all three models.

Probability of Passing English 1301 Within 1 Academic Year by Treatment Status, Model

- All: 24.2 PPT***
- Accelerated Learning Program: 21.6 PPT***
- Required Support Use: 27.8
- Extended Instructional Time: 25.2 PPT***

* = statistically significant at 0.1 level
** = statistically significant at 0.05 level
*** = statistically significant at 0.01 level
We will continue to analyze impacts through 2021

• Additional cohorts of students
 – Including some scoring at lower levels
• Additional outcomes
• Longer-term impacts
• Explaining impacts
 – Statistical analysis examining variation in impacts, moderators and mediators
 – Implementation analysis examining treatment contrasts across nine areas of interest
Collaborating with THECB to ensure impact

- Embedded project within activities of companion IES-funded CIRE project focused on other areas of statewide developmental education reform
 - Embedded research staff
 - Weekly/biweekly/monthly meetings with THECB staff

- Statewide policy moving quickly, so we have had to be flexible
 - Early report on statewide implementation to inform roll-out of HB 2223
 - Turning early findings and evaluation frameworks into professional development sessions for institutions
 - Adjusting study to address curveballs from policy

- Critical national policy issue, so looking to disseminate more broadly to inform states who are further behind
Accelerating Success: The Impact of Florida's Developmental Education Reform on First Year Credit Accumulation

Shouping Hu, Ph.D.
Christine Mokher, Ph.D.
Toby Park, Ph.D.

Society for Research on Educational Effectiveness
March 2019

The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305A160166 to Florida State University, and in part by a grant from the Bill & Melinda Gates Foundation. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education, or the Gates Foundation.
Introduction

• DE often taken as a sequence in multiple subject areas
• Can slow academic progress in 2 ways:
 − More exit points – many students don’t return to take next course in the sequence
 − Completers have more course requirements
Florida’s DE Reform

• Required several significant changes simultaneously
 – Most students exempt from placement testing & DE
 – Remaining DE courses taught using new instructional strategies
 – Colleges required to offer enhanced advising & support services
Research Questions

1. How have the number of college-level credits attempted and earned in the first and third years of enrollment changed?

2. Did the impact of the reform differ by race, FRL status, or high school academic preparation?
Hypotheses

• H1: ↑ credits taken in year 1
 – Opt out of DE or take accelerated modalities

• H2: ↑ credits earned in year 1
 – Enhanced advising and support services

• H2: ↑ credits taken & earned in year 3
 – Fewer exit points, improved course alignment, academic momentum resulting in self-efficacy
Methods

• Interrupted time series model

\[Y_{ijt} = \beta_0 + \beta_1(2014)_t + \beta_2(S)_{ijt} + \beta_3(HS)_{ijt} + \xi_i + \lambda_t + \epsilon_{ijt} \]

• Also included interactions of 2014 variable with race, FRL, and HS preparation
Data

• Student records for population of FTIC
 – 28 public state colleges
 – 3 cohorts pre-reform and up to 3 post-reform

• Outcomes – measured in years 1 & 3
 – Number of college-level credits attempted
 – Number of college-level credits earned
Data

• Control variables
 – Student characteristics – race, sex, FRL
 – HS preparation – basic, standard, or advanced track
 – Cohort – underlying time trend
 – Local unemployment rate
 – Institution fixed effects
Results – Year 1

<table>
<thead>
<tr>
<th>Year</th>
<th>Credits earned</th>
<th>Credits not earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>9.9</td>
<td>4.0</td>
</tr>
<tr>
<td>2012</td>
<td>10.0</td>
<td>4.2</td>
</tr>
<tr>
<td>2013</td>
<td>10.1</td>
<td>4.4</td>
</tr>
<tr>
<td>2014</td>
<td>10.7</td>
<td>5.0</td>
</tr>
<tr>
<td>2015</td>
<td>11.6</td>
<td>5.1</td>
</tr>
<tr>
<td>2016</td>
<td>11.6</td>
<td>5.1</td>
</tr>
</tbody>
</table>
Results – Year 3

College credits attempted

Combined pre-policy (cohorts 2011-2013) Post-policy (cohort 2014)
Results – Year 3

College credits earned

- Combined pre-policy (cohorts 2011-2013)
- Post-policy (cohort 2014)
Results – By Subgroup

<table>
<thead>
<tr>
<th></th>
<th>Credits attempted, year 1</th>
<th>Credits earned, year 1</th>
<th>Credits attempted, year 3</th>
<th>Credits earned, year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post*Black</td>
<td>1.587***</td>
<td>0.580***</td>
<td>0.961**</td>
<td>0.211</td>
</tr>
<tr>
<td>Post*Hispanic</td>
<td>0.632***</td>
<td>0.344***</td>
<td>0.607*</td>
<td>0.329</td>
</tr>
<tr>
<td>FRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post*FRL</td>
<td>1.115***</td>
<td>0.348***</td>
<td>0.162</td>
<td>-0.369</td>
</tr>
<tr>
<td>HS Preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post*Basic</td>
<td>1.556***</td>
<td>0.411***</td>
<td>1.18***</td>
<td>0.237</td>
</tr>
<tr>
<td>Post*Advanced</td>
<td>-0.826***</td>
<td>-0.65***</td>
<td>-0.108</td>
<td>-0.096</td>
</tr>
</tbody>
</table>

***p<0.001, **p<0.01, *p<0.05
Summary

• Positive effects on all outcomes, but small in magnitude – noteworthy given cost effectiveness

• Reduced achievement gaps for Black, Hispanic, low-income and underprepared students (particularly in year 1)

• Important to continue to track long-term outcomes
Policy Implications

• Think about how to create synergy among complementary reform activities

• Reform as an ongoing learning process informed by the expertise of those responsible for implementation, rather than inflexible mandates.
For More Information

• Center for Postsecondary Success
 – centerforpostsecondarysuccess.org
 – Shouping Hu, Director (shu@fsu.edu)